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Abstract

Understanding the genetic basis of species adaptation in the context of global change

poses one of the greatest challenges of this century. Although we have begun to

understand the molecular basis of adaptation in those species for which whole genome

sequences are available, the molecular basis of adaptation is still poorly understood for

most non-model species. In this paper, we outline major challenges and future research

directions for correlating environmental factors with molecular markers to identify

adaptive genetic variation, and point to research gaps in the application of landscape

genetics to real-world problems arising from global change, such as the ability of

organisms to adapt over rapid time scales. High throughput sequencing generates vast

quantities of molecular data to address the challenge of studying adaptive genetic

variation in non-model species. Here, we suggest that improvements in the sampling

design should consider spatial dependence among sampled individuals. Then, we

describe available statistical approaches for integrating spatial dependence into

landscape analyses of adaptive genetic variation.

Keywords: computational approach, genome scan, local adaptation, landscape genomics,

molecular techniques, regression analysis
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Introduction

Can species adapt to global change? Environmental

change at all spatial scales is rapidly altering selection

regimes for global flora and fauna (Reusch & Wood

2007). One of the most challenging questions of our

time is whether adaptive evolution can keep pace with

the rate and direction of selection that is imposed by
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well Publishing Ltd
humans (Hendry et al. 2008). It is critical to assess how

genetic diversity may change and at what cost to the

maintainance of population viability in the long-term

(Lynch & Lande 1993). Adaptive genetic diversity dic-

tates narrower tolerance limits to changing environmen-

tal conditions for specific populations than for a species

as a whole (Etterson 2008). It is predicted that many

species are able to shift their geographic ranges to track

global change (Parmesan 2001), but the general poten-

tial of species to adapt to rapid change is still debated

(Davis et al. 2005; Reusch & Wood 2007).



Box 1. Overview of advantages and
drawbacks of the main genomic resources
available for landscape genomics studies

AFLPs (Amplified Fragment Length
Polymorphisms) and related markers

Until recently, the AFLP technique was the method

of choice to obtain large numbers of molecular mark-

ers for non-model organism genomic studies, since it

does not require prior sequenced-based information

(Meudt & Clarke 2007). For example, in one of the

most comprehensive AFLP-based genome scans,

1300 AFLP markers were surveyed to investigate the

genetic basis of host specialization in the larch bud-

moth (Emelianov et al. 2004). AFLP markers are bi-

allelic, dominant and they usually cover the entire

genome although they sometimes tend to cluster

around centromeres. A recurring issue associated

with the AFLP technique is fragment size homoplasy

(Vekemans et al. 2002), which occurs when non-

homologous AFLP fragments co-migrate. In a variant

of the AFLP protocol, the Diversity Array Technol-

ogy (DArT), up to several thousands of DNA poly-

morphisms can be detected in a single hybridization

assay on a microarray slide (Jaccoud et al. 2001). The

major advantage of DArTs over AFLPs is that their

sequences are easily accessible.

Microsatellites

Microsatellites are codominant and generally multi-

allelic (Zane et al. 2002). This makes them useful to

monitor decreases in intrapopulation genetic variabil-

ity observed in the vicinity of adaptive genes (Schlöt-

terer 2002) or to identify particular alleles specifically

associated with environmental variables (Joost et al.

2007), for example. However, microsatellites have a

high mutation rate and a complex mutation pattern,

characteristics which can be difficult to accommodate

when searching for selection of signatures using tradi-

tional population genomics models (Vitalis et al.

2001). Moreover, microsatellites can be sparse in the

genome of some species and thus difficult to find

(Schlötterer 2004). Up to now, the development of

hundreds of microsatellites was time-consuming and

expensive (Zane et al. 2002), and these markers were

also not particularly amenable to massively parallel

genotyping. As a result, only in model species were

microsatellite resources sufficient to be exploited in a

population genomics context (Luikart et al. 2003). For-

tunately, the increased availability of high-throughput
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Local adaptation results from the balance between

gene flow and many natural selection factors, including

the climate (Savolainen et al. 2007; Hoffmann & Willi

2008). Adaptive differentiation among populations

within a species has been documented through the

study of clinal variation in physiological, phenological

and fitness traits in relation to gradients in climate

(Davis et al. 2005; Gienapp et al. 2008). Broadly speak-

ing, however, we are only just beginning to understand

the genomic basis of phenotypic traits associated with

local adaptation for species whose whole genomes

have been sequenced (e.g. Begun et al. 2007; Turner

et al. 2008). Additionally, for a limited number of spe-

cies such as forest trees, studies have been able to

build upon a long history of common garden experi-

mentation (Bradshaw et al. 1995; Neale & Savolainen

2004; Neale 2007; Neale & Ingvarsson 2008; Grattapa-

glia et al. 2009), allowing the characterization of the

geographic pattern of neutral and adaptive genetic var-

iation in relation to geography and climate (Savolainen

et al. 2007; Aitken et al. 2008; Eckert et al. 2009a,b).

This knowledge may aid the understanding of these

species’ responses to rapid climate change in the future

(Sork et al. 2010).

Nonetheless, recent and upcoming advances in high

throughput DNA sequencing leads to ever increasing

availability of genomic sequences, facilitating an

enhanced understanding of the genetic basis of current

and future adaptation in a broad variety of species

(Segelbacher et al. 2010). As a result, the limiting factor

in future studies will no longer be the molecular labora-

tory workload, but rather the development of statistical,

bioinformatics and modelling tools for identifying both

genes or gene networks under selection (McCarthy

et al. 2008), as well as the environmental factors acting

as selective pressures. We refer to such a framework for

understanding the spatial distribution of adaptive

genetic variation using genomic tools (Box 1) as land-

scape genomics (Joost et al. 2007), and in Box 2 we clar-

ify the use of this and other related terms.

Our focus is on studies and methods that will assess

spatial correlations of particular molecular markers

with environmental variables (Hamilton et al. 2002;

Manel et al. 2009, 2010; Schwartz et al. 2010; Poncet

et al. 2010). The pattern of genetic variation observed

in such loci along environmental gradients has usually

been interpreted as being caused by natural selection

(Endler 1986; Schmidt et al. 2008). Further, we focus on

the effects of evolutionary processes that can operate

over much smaller spatial and temporal scales than

those typically employed in phylogeographic studies

(Manel et al. 2003). However, it is important to point

out that larger time scale effects such as selective

sweeps, a form of genetic hitchhiking where neutral
� 2010 Blackwell Publishing Ltd



sequencing data will greatly facilitate microsatellite

discovery and typing in non-model species (Hudson

2008). Microsatellites are featured in several studies

reported in this issue. For instance, based on microsat-

ellite data, Sork et al. (2010) detected climatically-

associated genetic variation in populations of valley

oak in Califormia, suggesting that the potential for

future adaptation in the face of climate change is lim-

ited in this long-lived species.

SNPs (Single Nucleotide Polymorphisms)

SNPs are the most abundant type of polymorphism

in genomes (Schlötterer 2004). For example, on aver-

age there is one SNP every Kb in the 3-billion-base

human genome (Zhang & Hewitt 2003). They are

usually biallelic and evolve according to a simple

infinite sites mutation model (Schlötterer 2004). One

of the major drawbacks of SNPs is their susceptibil-

ity to ascertainment bias, i.e. the bias introduced by

using a subset of the studied individuals or popula-

tions for marker discovery purposes and which can

lead to a skew in the distribution of allelic frequen-

cies (Morin et al. 2004). Detecting SNPs also requires

a priori information on the studied genome sequence

(Morin et al. 2004), but once this task is completed,

SNPs present a high potential for an automated

high-throughput analysis at a moderate cost (Schlöt-

terer 2004). The most impressive SNP datasets have

long been restricted to model species: for instance,

more than 10 000 SNPs were surveyed to examine

the effects of differentiation and selection in the

human (Akey et al. 2004) and mouse (Harr 2006) ge-

nomes. Fortunately, next-generation sequencing tech-

nologies are expected to give a substantial boost to

the use of SNPs for both model and non-model or-

ganims. For example, Turner et al. (2010) investi-

gated the genetic basis of adaptation to serpentine

soils in Arabidopsis lyrata using about 8 millions poly-

morphims (mostly SNPs) identified in Solexa

sequencing data. The markers showing the highest

genetic differentiation between soil types were pref-

erentially situated in genes involved in heavy metal

detoxification and calcium ⁄ magnesium transport.

These genes thus constitute good candidate for ser-

pentine adaptation.

EST (Expressed Sequence Tag)-based molecular
markers and other markers derived from next-
generation sequencing data.

ESTs are short (�200–700 nucleotides) subsequences

of transcribed and spliced DNA, generated by par-

tially sequencing a pool of mRNAs (Bouck & Vision

2007). One of the most exciting prospects offered by

next-generation sequencing technologies is the devel-

opment of EST libraries for a wider range of species

(Hudson 2008). These libraries can be astutely

exploited to identify EST-based markers. These

markers (classical microsatellites or SNPs) are usu-

ally located within a coding or a transcribed but

untranslated region of a gene (Bouck & Vision 2007);

but, they can also be assayed in non-transcribed

sequences flanking genes by using a primer anchor-

ing within the EST and another primer complemen-

tary to an adaptor-ligated restriction site (Bouck &

Vision 2007). EST-based markers are thus tightly

associated to gene-rich regions, which is particularly

useful when searching for signatures of selection

(Bonin 2008). Other types of promising marker sys-

tems building on next-generation sequencing data

include the CRoPS (Complexity Reduction of Poly-

morphic Sequences; van Orsouw et al. 2007) and the

RAD (Restriction-site associated DNA; Baird et al.

2008) methods. The practical and analytical short-

comings of all these new markers are nonetheless

poorly understood. For example, the use of normal-

ized EST libraries can theoretically bias the estima-

tion of alleles frequencies at EST-based markers by

favoring the sequencing of low-frequencies alleles.

Similarly, the impact of sequencing errors on marker

discovery remains to be explored.
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alleles closely linked to a selectively favoured allele can

increase in frequency (Hedrick 2005), can also affect

the contemporary spatial distributions of genetic varia-

tion, even at fine spatial scales (Schonswetter et al.

2005; Knowles 2009). Large scale spatial effects from

the distant past, such re-immigration after the last

recent glacial epoch and subsequent refugia can also

affect current spatial genetic, again even at fine scales

(e.g. Boys et al. 2005). The potentially confounding

effects of past events must be carefully considered

using population genetic theory and by determining

the appropriate spatial and temporal scales (discussed

by Anderson et al. 2010).

Here, we identify some of the major challenges and

future research directions in the study of the effects of

environment on the adaptive genetic response of non-

model organisms. We also identify gaps in the acquisi-

tion of molecular-genetic and environmental data that

currently limit the application of landscape genomics to

real-world problems. We discuss the importance of

sampling design, which is strongly influenced by spatial

dependencies among sampling points (Muirhead et al.

2008; Schwartz & McKelvey 2009; Anderson et al. 2010).



either potentially linked to candidate genes or the

4 S . MANEL ET AL.
Finally, we suggest statistical approaches for integrating

spatial dependence in analyses of genomic data.

genes themselves under selection. Landscape genom-

ics is included in landscape genetics, but refers more

specifically to the use of the future large amount of

genetic data due to high-throughput sequencing.

Landscape genomics is thus at the interface of bioin-

formatics, genomics, spatial statistics and landscape

ecology.

Molecular genecology (Hamilton et al. 2002) is the

study of geographical clines in the frequencies of

alleles and their relationship to ecological clines in

environmental conditions. Its objectives are largely

the same as for the other research fields listed above.

Ecological genomics (Ungerer et al. 2008) inte-
Molecular data in landscape genomics

The main goal of landscape genomics is to identify loci

having adaptive significance in the genome by combin-

ing genomic and environmental data (Box 2) (Joost

et al. 2007). Landscape genomics has the remarkable

characteristic of not requiring phenotypic data on the

adaptive trait(s) of interest, which can be laborious to

collect especially for wild and ⁄ or endangered species.

In that respect, it differs from other classical strategies

aimed at unraveling the genetic basis of adaptation,

such as Quantitative Trait Loci (QTL) analysis or associ-
Box 2. Clarification of terms

A number of recent terms, including landscape

genetics (Manel et al. 2003), landscape genomics (Lu-

ikart et al. 2003; Joost et al. 2007), molecular genecol-

ogy (Hamilton et al. 2002; Skot et al. 2002), and

ecological genomics (Ungerer et al. 2008), have

recently been introduced to describe studies aimed

at understanding the impact of the environ-

ment ⁄ landscape on genetic response. These are in

fact not new research fields, but rather involve the

interdisciplinary integration of multiple pre-existing

research disciplines, including spatial statistics, land-

scape ecology, population genetics and molecular

biology. These terms were initially introduced to

facilitate the discussion of researchers across disci-

plines; however, the multiplication of similar terms

has led to the need for clarification.

Landscape genetics (Manel et al. 2003) aims to

provide information about the interaction between

landscape features and microevolutionary processes,

such as gene flow, genetic drift or selection. Most

current applications of landscape genetics focus on

gene flow and migration (processes that can either

facilitate or constrain local adaptation), i.e. the effect

of the environment on the selectively neutral compo-

nent of genetic diversity (Storfer et al. 2007; Ander-

son et al. 2010). However, landscape genetics also

aims to correlate allele frequencies with the environ-

ment in order to understand the effect of the envi-

ronment on the adaptive component of genetic

diversity (Holderegger et al. 2006).

Landscape genomics (Luikart et al. 2003; Joost

et al. 2007) uses correlation studies between the

genomic data and the environment to identify genes

grates over several disciplines and seeks to under-

stand the genetic mechanisms underlying responses

of organisms to their natural environment. It is

broader than landscape genetics and genomics, since

it further includes experimental and laboratory

approaches.
ation mapping or quantitative genetics studies (Stinch-

combe & Hoekstra 2008).

A prerequisite of the landscape genomics approach is

to survey many genetic loci (typically several hundred

or more) scattered in the genome of many individuals

in order to discover genomic regions under selection,

either directly or more likely though physical linkage

(Box 3) (Luikart et al. 2003; Storz 2005). Several geno-

mic resources can advantageously be exploited to this

end (Box 1). Yet until recently, the amplified fragment

length polymorphism (AFLP) technique has often been

the most efficient option in terms of effort and costs to

screen the genome of non-model species (Luikart et al.

2003). Hundreds of AFLP markers spanning the whole

genome can be obtained relatively easily for any organ-

ism, without a priori sequence knowledge (Meudt &

Clarke 2007). However, it is very laborious to link

markers showing a signature of selection with the

actual gene or mutation under selection (Bonin 2008).

Moreover, obtaining sufficient AFLP markers to ade-

quately saturate the genome is difficult, especially in

species where linkage disequilibrium decays rapidly

(Bonin 2008). As a result, AFLP-based genome scans

have largely failed to pinpoint potential adaptive

gene(s) or mutation(s) (but see Wood et al. 2008; Manel

et al. 2010; Poncet et al. 2010).

Soon such technical limitations will disappear, owing

to recent advances of next-generation sequencing tech-

nologies and its increasing affordability (Box 1) (Hud-

son 2008). The phrase ‘next-generation sequencing’

refers to the series of recent technologies capable of pro-

ducing up to millions of relatively short sequence reads
� 2010 Blackwell Publishing Ltd



covery, admixture-caused population level LD

between markers and known genes is a major con-

founding problem. The solution often is to add

genetic transmission tests and to analyse data using

the Transmission Disequilibrium Test TDT (Spielman

et al. 1993) or similar methods.

In general, little is known about multilocus genet-

ics in a spatially explicit framework. One computer

simulation study with selectively neutral genes and

low amounts of dispersal in an isolation by distance

process for a large population showed that LD was

very small at the population-wide level, whether or

not the two loci considered were physically linked.

However, LD was large at smaller spatial scales,

again irrespective of physical linkage, suggesting LD

changes across different spatial scales (Epperson

1995). Moreover the relationship of LD with recombi-

nation rates is also scale dependent. If the complex-

ity of the environment or the landscape are added,

appropriate analytical models quickly become intrac-

table, making computer simulations necessary

(Epperson et al. 2010).

ADAPTI VE GENETIC VARIATION AND L ANDSCAPE GENETICS 5
(35–1000 bases) at once thanks to the high paralleliza-

tion of the sequencing process. Data throughput will

continue to scale up in the near future with the on-

going development of real-time single-molecule

sequencing technologies targeting longer reads (Hudson

2008). As a result, companies like VisiGen are aiming

for a $1000 (human) genome, and we expect that stud-

ies of non-model organisms too will necessarily benefit

from this ‘genomic revolution’. Currently, and for a

wide range of species, it is financially feasible to

sequence Expressed Sequence Tag (EST; see Box 1)

libraries and develop EST-associated molecular markers

(e.g. Vera et al. 2008). Interestingly, unlike AFLPs or

‘classical’ microsatellites or Single Nucleotide Polymor-

physms (SNPs), these markers occur in gene-rich

regions of the genome, i.e. those most likely to be under

selection. EST-based genome scans have already been

used to identify promising candidate genes for adapta-

tion in various species such as white spruce (Namroud

et al. 2008), salmon (Vasemagi et al. 2005) and seagrass

(Oetjen & Reusch 2007). However, the use of high-

throughput sequencing techniques in a landscape ge-

nomics context is still in its infancy (but see Eckert et al.

2009a; 2010; for recent applications). Additionally,

increasing the number of analysed loci will inevitably

raise concerns about linkage disequilibrium, as is dis-

cussed in Box 3 (Segelbacher et al. 2010). Furthermore,

current landscape genomic studies, currently for the
Box 3. A cautionary note on linkage
disequilibrium and multilocus genetics

Multilocus genetic processes are likely to figure

prominently in the future of landscape genetics and

genomics. Note, however, that spatial genetic struc-

ture and admixture could create linkage disequilib-

rium (LD) between physically unlinked markers as

well as between unlinked markers and adaptive can-

didate genes. This can result in a two locus version

of the Wahlund effect and hence a bias in ascertain-

ment of genetic variability or population structure

(Prout 1973; Christiansen & Feldman 1975). Primary

among forces creating LD that is useful for gene dis-

covery may be genetic hitchhiking effects (Thomson

1977; Asmussen & Clegg 1981; Ewens 2004; Hedrick

2005), which can take a number of forms, most

importantly the accumulation of neutral mutations

near alleles of loci that have undergone long term

natural selection. Admixture can be a problem in an

existing study system, or it could become a problem

as populations go extinct or are founded and colo-

nized. As an example, for human disease gene dis-

� 2010 Blackwell Publishing Ltd
most part at the exploratory stage, need to move for-

ward to the confirmatory stage of proving the adaptive

significance of identified loci linked to genes under

selection (Reusch & Wood 2007).
Environmental data

Landscape genomic studies either use environmental

data collected in the field or take advantage of existing

GIS databases. Recent increases in the availability of digi-

tal environmental data from remote sensors and weather

stations have now made many global environmental

data sets freely available (Box 4). In the absence of local

environmental data, global environmental data can serve

as valuable surrogates in landscape genomics studies.

Yet, depending on the spatial (and temporal) scale of

study question, detailed local measurements with high

precision (e.g. spatial resolution £1 m2) may often be

needed to understand local microevolutionary processes

(Anderson et al. 2010). Micro-environmental data may

be gathered using special sensor networks installed in

the field, providing high-resolution eco-climatic data.

The US National Ecological Observatory Network

(NEON) will likely encompass sensor networks through-

out the USA to gather long-term data on ecological

responses to changes in land use and climate at a cost of

$400–450 million USD (Keller et al. 2008). Such high res-

olution data form the very foundation for future research

to investigate the current local adaptation of organisms,

which has been shaped by past selection.



Box 4. Initiatives to map the environment

Large scale database measures. The Global Map

project (http://www.globalmap.org/) exemplifies

the trend toward constructing freely available, large-

scale environmental data sets. It will include eleva-

tion, land cover (including vegetation) and land use

data, as well as transportation infrastructure and

political boundaries. The project is supervised by the

International Steering Committee for Global Map-

ping (Secretariat of ISCGM 1998) with over 90 partic-

ipating countries (Verdin & Jenson 1996). The main

international global environmental geodata sources

are included into the Global Map project and are

available over the Internet from the Secretariat of

ISCGM housed within the Geographical Survey Insti-

tute of Japan.

Several important international or national agen-
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Future environmental data acquisition for use in

landscape genomics should: (1) use measures of envi-

ronmental conditions within the home range of mobile

organisms (Moorcroft & Lewis 2006); (2) complement

coarser environmental data sets acquired over several

decades (e.g. LANDSAT data) with local high resolu-

tion environmental data (e.g. fine scale IKONOS data);

(3) make use of performance increases in data from

new satellites or sensors-networks (4) make use of un-

derexploited Digital Elevation Models (DEMs); and (5)

use spatio-temporal three-dimensional data (Gugerli

et al. 2008) instead of point environmental data, as is

especially important in studies of vagile animals. We

could then precisely match genetic data to environment

at adequate spatial and temporal scales. For example

Sork et al. (2010) used fine scale climate data at a scale

appropriate for the genetic data to understand how

climate change shapes the evolutionary response of

Californian valley oak (Quercus lobata).

cies have made efforts to freely distribute geo-envi-

ronmental data describing the earth at different

resolutions and for different periods. Primary among

these are the European Environment Agency (EEA;

http://www.eea.europa.eu/), American agencies

such as USGS and NASA, and LANDSAT satellite

images (http://www.landsat.org), which have

offered global orthorectified data free of charge.

Moreover, the Global Biodiversity Information Facil-

ity (GBIF; http://www.gbif.org/) is an international

organization which aims to make the world’s biodi-

versity geodata digitally available (including data on

livestock species). Finally, UNEP documents the Glo-

bal Environment Outlook (http://www.unep.org/

geo). This UN report presents the challenges facing

the Earth in safeguarding the environment and mov-

ing towards a more sustainable future, and it pro-

poses a data compendium with a list of all key data

providers (http://geocompendium.grid.unep.ch/).

Local scale sensor measures. With regard to local

scale, research in landscape genomics will benefit

from an ongoing major technological revolution in the

acquisition of high spatial and temporal resolution

environmental data. Sensor networks can be used for

survey of the environment at many different scales,

from continental systems designed to measure global

change to recent advances allowing high resolution

monitoring of specific habitats. They can be combined

with computational tools including high-performance

communication networks, data storage systems, GIS

and visualization environments (Rundel et al. 2009).

Moreover, resulting data can be easily integrated with

remote sensing or other types of standard sets of eco-

climatic parameters. The main quality of sensor net-
Spatial aspects specific to landscape genomics

To predict the future geographical range of a species, it is

crucial to understand how species biologically respond to

spatial heterogeneity of the environment or landscape at

multiple spatial and temporal scales (Fortin & Dale 2005).

Current species distributions are the result of many con-

founding processes, including population demography

and history, phylogeographic history, behavior, physio-

logical tolerances, competition, response to human land

use change and adaptation to the environment (Gaston

2003). The interplay between selection and gene flow

strongly influences biotic processes linked to adaptation

(Savolainen et al. 2007; Holderegger & Wagner 2008).

Species distributional response to environmental con-

ditions is a phenomenon that is often referred to as spa-

tial dependence (Legendre 1993; Fortin & Dale 2005;

Wagner & Fortin 2005). Species spatial aggregation

occurs as well due to biotic processes such as dispersal

and species interactions. These spatial structures create

spatial autocorrelated genetic data. The degree of spa-

tial autocorrelation in genetic data can be measured

though various spatial autocorrelation coefficients (For-

tin & Dale 2005). For animal species, a hypothetical

example of the effects of habitat (Fig. 1) on spatial

dependence of genetic associations among individuals

for a neutral genetic locus versus a locus under selec-

tion is represented by Fig. 1. Spatial distributions of

genotypes at the two loci are characterized by different

spatial autocorrelation patterns. Measures of spatial

structure for genotypes at the neutral locus often exhibit

an isolation by distance pattern (Wright 1943) reflecting

localized breeding and gene flow (Fig. 1b). In the exam-

ple, environmental variables intrinsic to forest habitats
� 2010 Blackwell Publishing Ltd



works lies in their capacity to extend spatial and tem-

poral scales of observation, affording opportunities to

obtain unexpected results and to develop new

research paradigms (Porter et al. 2009).

Multiscale measures and Digital Elevation Mod-

els (DEM). DEM, using elevation measures (from da-

tabease or direct measures) and numeric models, can

provide a diversity of morphometric (slope, aspect,

curvature), hydro-morphometric (e.g. wetness), and

also climatic indicators (e.g. solar radiation). The

USGS Earth Resources Observation and Science Cen-

ter (http://eros.usgs.gov) distributes global digital

raster data sets with spatial resolutions ranging from

1 km (GTOPO30) to 90 m resolution (SRTM), and

even 30 m for the United States and territorial islands.

These data sets can be completed with increasingly

available Very High Resolution DEMs (1 m for XY

coordinates, and �0.5 m for Z) acquired with LIDAR

(Light Detection And Ranging) technology, and are

able to generate high-resolution habitat predictors

(Andrew & Ustin 2009). This underexploited tool can

provide multiscale data (Lassueur et al. 2006) to be

used in landscape genomics studies.
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confer a selective advantage to a certain genotype that

is selected against in intervening grassland habitat. Spa-

tial patterns in genotypic variation in the locus under

selection is therefore the end result of convergence, iso-

lation by distance and environmental effects intrinsic to

forest as well as to grassland habitats.

In addition, current species distributions may have

resulted from adaptations to environmental conditions

that no longer exist (i.e. ancestral vs. current niche)

(Wiens & Graham 2005; James et al. 2007; Roe et al.

2009). Indeed, a species optimal habitat may have

already been lost or changed due to either natural or

human influence. In such circumstances, current envi-

ronmental–genotypic relationships would not be reli-

able as indicators of a species’ genetic responses to

environmental changes (Cushman et al. 2009).
Sampling design

Sampling of populations adapted to different habitats,

climates, land uses or management systems (e.g. for live-

stock) must be carefully designed and statistically analy-

sed over appropriate geographic scales (Lohr 1999;

Fortin & Dale 2005; Muirhead et al. 2008; Schwartz &

McKelvey 2009; Anderson et al. 2010). Sampling effort

that is too low (Muirhead et al. 2008; Schwartz & McKel-

vey 2009), in light of the multiplicity of landscape and

environmental factors acting at multiple spatial and tem-

poral scales, limits the signal to noise ratio of spatial
� 2010 Blackwell Publishing Ltd
genetic structure and could lead to misinterpretation of

spatial statistics. To interpret detection of significant

relationships between genetic and spatial environmental

data, one should distinguish among the effects of sam-

pling effort (Fortin & Dale 2005; Muirhead et al. 2008),

sampling design (Fortin et al. 1989; Legendre et al.

2002), the power of statistical methods employed (Fortin

& Dale 2005) and the confounding effects of multiple

spatio-temporal scales (Dungan et al. 2002; Geffen et al.

2004; Boulet et al. 2007). Accordingly, sampling designs

should be stratified across environmental variables of

interest using current landscapes features and environ-

mental conditions as a quasi-experimental design to test

specific hypotheses. In fact, landscape heterogeneity

itself can be used as a quasi-experimental design to test

specific hypotheses. For example, samples taken along

an altitudinal gradient could be used to determine local

adaptation to climatic conditions (e.g. Bonin et al. 2006).

Also, it is important to assess the effective distance and

pathway that an organism would use to move in a heter-

ogeneous landscape (Spear et al. 2010), in order to relate

the genetic diversity to the appropriate landscape fea-

tures. For example, Vignieri (2005) tested whether indi-

viduals of the Pacific jumping mouse were using

riparian zones or mountains to move between areas.

In quantifying the spatial structure of genetic data, it

is difficult to tease apart the relative proportion of spa-

tial dependence versus spatial autocorrelation described

in the previous section, which are always confounded

in both plants and animals. A potential solution to this

problem is spatially-nested sampling designs, whereby

for animals the distance between sampling locations

varies from less than that of the species daily move-

ment (i.e. to capture the degree of spatial autocorrela-

tion) to beyond natal dispersal (i.e. to determine the

environmental-species relationship) (Fortin & Dale

2005). Another way would be to perform model-based

sampling to account for known environmental structure

or gradients (de Gruijter & ter Braak 2004).
Challenges in spatial analysis of adaptive loci

The null hypothesis is that there is no correlation

between a particular allele and environmental factors

such as temperature or moisture apart from that which

may be caused by limited dispersal and genetic drift.

Relating specific alleles to an environmental variable is

similar in some regards to association studies (Gupta

et al. 2005; Balding 2006) that link alleles to phenotypes

or to studies correlating species occurrence to environ-

mental variables, as in ecological niche models. Meth-

ods used to tackle this problem have ranged from

simple approaches such as linear regression to more

sophisticated approaches such as generalized additive



(a)

(b)

Fig. 1 Hypothetical example, for an animal species, of the

effects of habitat on the spatial structure of genetic associations

among individuals for nominal data (i.e. like and unlike geno-

types; Sokal & Oden 1978) for a neutral genetic locus and locus

under selection. (a) This spatially heterogeneous landscape has

three land cover types (deciduous forest, grassland and conif-

erous forest) where an animal species is present in all three

types. The gray dots indicate sampling locations. (b) Spatial

distributions of genotypes at the two loci are characterized by

different autocorrelation patterns obtained at the sampling

locations. Measures of spatial dependence for genotypes at the

neutral locus exhibit an isolation by distance (Wright 1943) pat-

tern reflecting localized breeding and gene flow. Environmen-

tal variables intrisic to forest habitats confer a selective

advantage to a certain genotype that is selected against in

intervening grassland habitat. Spatial patterns in genotypic

variation in the locus under selection appear to be due to con-

vergence, isolation by distance and environmental effects

intrinsic to forest as well as to grassland habitats.
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models (Guisan et al. 2002; Pearman et al. 2008). Poten-

tial solutions have been proposed to consider explicitly

the spatially dependent nature of the data using spatial

regression methods (Dormann et al. 2007; Diniz et al.

2009; Dormann 2009). However, applications to detect

loci potentially under selection are still lacking (but see

Manel et al. 2010). Ideally, statistical methods in land-

scape genomics should consider both (1) spatial auto-

correlation in allele frequencies generated by biotic

processes (i.e. gene flow) which are distance related;

and (2) unaccounted spatially structured environmental

variables resulting in a spatial structuring of allele fre-

quency distribution (Manel et al. 2010). Spatial regres-

sion methods have been put forth (e.g. conditional

autoregressive models and simultaneous autoregressive

models) to consider spatial dependence between indi-

viduals ⁄ loci and biotic processes by incorporating geo-

graphic space in the model structure. A promising

spatial regression approach is the method of Moran’s

eigenvector maps (MEM) (Borcard & Legendre 2002;

Dray et al. 2006; Diniz-Filho et al. 2009). MEM variables
are the eigenvectors of a spatial weighting matrix calcu-

lated from the sampling locations’ geographic coordi-

nates. MEM analysis produces uncorrelated spatial

eigenfunctions used to dissect the spatial patterns of the

studied variation (allele frequencies in the present con-

text) into separate scales to be used as predictors in

regression. To detect loci potentially linked to genes

under selection, Manel et al. (2010) used multiple linear

regressions to correlate single AFLP allele frequencies

from a large genome scan of Arabis alpina with environ-

mental variables. To consider unmeasured variables in

the analysis which potentially create spatial structure in

allele distribution, they used only broad-scale principal

coordinates of neighbour matrices (MEMs) as explana-

tory variables.

When sample size is small, spatial regression meth-

ods may not be appropriate given that the signal to

noise ratio is generally low; geographically weighted

regression has been proposed as one promising alterna-

tive (Fotheringham et al. 2002). In non-stationary cir-

cumstances, i.e. when spatial autocorrelation and effects

of environmental correlates are not constant across the

region, regression tree methods (e.g. CART, random

forest, boosted regression; Elith & Graham 2009) offer

alternatives to spatial regression (Dormann et al. 2007;

Fortin & Melles 2009). Regression tree methods are

based on an iterative procedure that splits the observa-

tions (samples) into a series of two groups in a hierar-

chical ‘tree’ (dendrogram-like) structure where the

values of dependent variable are similar within each

group based on a specific value of one of the indepen-

dent variables (quantitative or qualitative independent

values). Usually the first deeper splits reflect mostly

large spatial scales processes while the last shallower

splits in the tree structure correspond to localize spatial

effects.

Consideration of spatial autocorrelation (i.e. biotic

and abiotic processes) in the models allows the determi-

nation of processes governing allele frequency variation,

but results may be strongly affected by sampling and

stochastic variation (Slatkin & Arter 1991). Population

and family structures have also been highlighted as a

confounding issue in the inference of natural selection

(Balding 2006; Excoffier et al. 2009). Bayesian geograph-

ical analysis approaches have been recently introduced

to address this problem by testing for correlations

between allele frequencies and environmental variables

after correcting for background levels of population

structure and differences in sample size (Felsenstein

2002; Yu et al. 2006; Hancock et al. 2008). Using this

approach, Hancock et al. (2008) found evidence of a

selective effect of the climate on metabolism genes in

humans from the analysis of the association between

973 SNPs and climatic variables. This approach requires
� 2010 Blackwell Publishing Ltd
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that populations are known or defined in advanced (i.e.

from genetic structure) to be able to estimate allele fre-

quency, which is not always possible depending on the

species and the sampling (Manel et al. 2005). Studies of

adaptive genetic variation can benefit by genotyping

many populations, in a broad range of conditions

(Turner et al. 2010). It appears that in some cases, it is

more effective to sample a large number of locations

with fewer individuals than to sample many individu-

als in only a few locations (Poncet et al. 2010).

Once a model has been chosen, it is necessary to

choose among multiple, ideally uncorrelated explana-

tory variables. Model selection procedures are com-

monly used for this purpose by giving a weight (score

of importance) to each explanatory variable (Burnham

& Anderson 2002). Such analyses result in choosing the

factors that explain the highest proportion of variation

in the dependent variable (usually allele frequency vari-

ation in landscape genomics studies).

Models will likely become increasingly complex in

addressing landscape genomics issues, able to account

for longer term effects, various modes of adaptive selec-

tion, linkage disequilibrium (Servin & Stephens 2007),

pleiotropy and epistasis, structural versus regulatory

genetic effects, as well as being able to compare multi-

ple null and alternate hypotheses, and tailored to the

characteritics of the study species. In light of the great

complexity of landscape genetic processes, the goal of

predicting the population genetic effects following pro-

jected global changes for a given species will require

that appropriate models be constructed carefully, taking

into account as many details of organismal biology as

possible. The modes of selection responsible for current

adaptation must be determined and implemented, and

projection models should be spatially explicit and

include both stochastic and uncertainty components.

Due to such complexity, most models will be based on

computer simulations (see Epperson et al. 2010). We are

currently working on programs that ultimately will be

able to model multiple distributions of a very wide

range of patterns of environmental variables (and how

these impose selection), include complex patterns of

dispersal and genetic transmission, are multilocus, and

allow environmental patterns to change over time.

Again, such approaches to projection will not necessar-

ily be simple, and careful attention should be paid to

model assumptions and sources of error.
Conclusions

Forthcoming whole genome data sets will propel molec-

ular ecology into a new dimension of genetic and evo-

lutionary analysis. Landscape genomics, via studying

the spatial distribution of loci of adaptive or ecological
� 2010 Blackwell Publishing Ltd
significance in natural populations, will contribute to

the better understanding of plant and animal adapta-

tion to their environment and inform management of

genetic resources in response to adaptation to global

change. Recent studies investigated the geographic and

environmental pattern in SNP’s associated with candi-

date genes, opening new insights in the understanding

of the potential of populations to adapt to climate

change (Eckert et al. 2009a,b; Eckert et al. 2010). Such

studies provide an opportunity to resolve unanswered

questions such as: does adaptation to local environ-

ments involve new mutations or standing genetic varia-

tion? How many genes influence ecologically important

traits (Orr 2005; Stinchcombe & Hoekstra 2008)? The

next step is to model spatially explicit forecasts of pop-

ulation genetic responses to climate shifts. What is

needed are spatially explicit metapopulation and con-

tinous space models (Wade & McCauley 1988; Harding

et al. 1998) with directional spatial shifting of the envi-

ronment. Models for genes that are differentially

selected in direct response to climate change will neces-

sarily add other layers, as well as the potentially com-

plex interactions between dispersal and selection.
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